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Abstract. The σ-terms are calculated at next-to-leading order in heavy baryon chiral perturbation theory
by employing a cutoff regularization. The results do not depend on the cutoff value to the order we are
working . The baryon masses and σπN (0) are used to perform a least-squares fit to the three appearing
low-energy constants and predictions for the two KN σ-terms and the strange contribution to the nucleon
mass are made. The lack of convergence in the chiral expansions of these quantities when regularized
dimensionally is overcome in the cutoff scheme. The σ-term shifts to the pertinent Cheng-Dashen points
are calculated. We also include the spin-3/2 decuplet in the effective theory.

1 Introduction

Chiral perturbation theory, which is the effective field the-
ory of the Standard Model at low energies in the hadronic
sector, has been successfully applied within the sector of
Goldstone Bosons [1]. However, traditional SU(3) heavy
baryon chiral perturbation theory does not appear to work
well. The leading nonanalytic components from loop cor-
rections destroy the good experimental agreement which
exists at lowest order. The additional contributions have
to be compensated by higher order counterterms. This
leads to problems with the convergence of the chiral se-
ries.

Recently a resolution of this problem was proposed
by using a cutoff regularization instead of the common
dimensional regularization scheme [2,3]. There, the au-
thors come to the conclusion that dimensionally regular-
ized Feynman diagrams carry implicit and large contribu-
tions from short distance physics. In contrast, the cutoff
scheme picks out the long distance part of the integral,
which behaves as expected on physical grounds. Both an
exponential cutoff in three-momentum and a dipole reg-
ulator were employed therein. However, in the cases dis-
cussed there the cutoff is irrelevant – a consistent chiral
expansion can then be carried out.

In these works an analysis of the octet baryon masses
has been given using the lowest and next-to-leading order
in the derivative expansion of the effective Lagrangian.
Further information on the scalar sector of baryon CHPT
is given by the scalar form factors or σ-terms which mea-
sure the strength of the various matrix elements mq q̄q(q =
u, d, s) in the proton and vanish in the chiral limit of zero
quark masses. Thus, they are particularly suited to test
our understanding of spontaneous and explicit chiral sym-
metry breaking. The purpose of this work is to examine
these quantities employing cutoff regularization schemes.

Another complication arises from the closeness of the
spin-3/2 decuplet resonances which are separated only by
231 MeV in average from the octet baryons which is con-
siderably smaller than the kaon and the η mass. These
resonances are, therefore, expected to play an important
role at low energies. It has been suggested [4] to include
the decuplet explicitely.

The present work is organized as follows. In the next
section we apply two different cutoff schemes in order to
regularize the Feynman diagrams without decuplet con-
tributions. Besides the dipole cutoff already used in [2,
3] we consider a slightly modified dipole cutoff which is
identical to the first one for vanishing off-shell momenta
of the baryons. The following section deals with the inclu-
sion of the decuplet fields. The results for both cases are
presented in Sect. 4. In Sect. 5 we conclude with a short
summary. The decuplet contributions to the scalar form
factors and the octet baryon masses are relegated to the
Appendices.

2 σ-terms in a cutoff scheme

In this section we will work with the heavy baryon La-
grangian for the Goldstone bosons and the octet baryons
which can be decomposed into a lowest order and a next-
to-leading order part in the derivative expansion:

Lφ B = L(1)
φ B + L(2)

φ B , (1)

where the superscript denotes the chiral order. In the
heavy baryon formulation the baryons are described by
a four-velocity vµ and relativistic corrections appear as

1/
◦

M corrections where
◦

M is the average octet baryon
mass in the chiral limit. A consistent chiral counting
scheme emerges, i .e. a one-to-one correspondence between
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the Goldstone boson loops and the expansion in small mo-
menta and quark masses. The lowest order Lagrangian
L(1)

φ B includes the two axial-vector couplings D and F :

L(1)
φ B = i tr

(
B̄[v · D, B]

)
+ D tr

(
B̄Sµ{uµ, B}

)
+F tr

(
B̄Sµ[uµ, B]

)
, (2)

where 2Sµ = iγ5σµνvν denotes the Pauli-Lubanski spin
vector. The pseudoscalar Goldstone fields (φ = π, K, η)
are collected in the 3×3 unimodular, unitary matrix U(x),

U(φ) = u2(φ) = exp{2iφ/
◦
F} (3)

with
◦
F being the pseudoscalar decay constant (in the chi-

ral limit), and

φ =
1√
2




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η


 .(4)

Under SU(3)L×SU(3)R, U(x) transforms as U → U ′ =
LUR†, with L, R ∈ SU(3)L,R. One forms an object of
axial-vector type with one derivative

uµ = iu†∇µUu† (5)

with ∇µ being the covariant derivative of U . The matrix
B denotes the baryon octet:

B =




1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ


 . (6)

The matrices uµ and B transform under SU(3)L×SU(3)R

as any matter field, e.g .,

B → B′ = K B K† , (7)

with K(U, L, R) the compensator field representing an el-
ement of the conserved subgroup SU(3)V . We will use
D = 3/4 and F = 1/4 which leads to gA = D + F = 1.25.
At next-to-leading order explicit chiral symmetry break-
ing terms appear:

L(2)
φ B = b0 tr

(
B̄B

)
tr
(
χ+

)
+ bD tr

(
B̄{χ+, B}

)
+bF tr

(
B̄[χ+, B]

)
(8)

with χ+ = 2B0 (u†Mu† + uMu) and M = diag(mu, md,
ms) the quark mass matrix. We prefer to work in the
isospin limit mu = md = m̂. To this order three coupling
constant, so called low-energy constants (LECs), appear.
Together with the average octet baryon mass in the chi-
ral limit

◦
M we end up with four unknown parameters.

These have to be fixed from phenomenology. Here, we will

use the four different masses for the octet baryons in the
isospin limit. Since both

◦
M and b0 shift the baryon mass

spectrum by a constant, the pion nucleon sigma-term at
zero momentum transfer σπN (0) ( or one of the kaon nu-
cleon sigma-terms ) has also to be taken into account in
order to fix all parameters.

One defines the scalar form factors or σ-terms, which
measure the strength of mq q̄q in the proton by:

σπN (t) = m̂ < p′ |ūu + d̄d| p > ,

σ
(1)
KN (t) =

1
2
(m̂ + ms) < p′ |ūu + s̄s| p > ,

σ
(2)
KN (t) =

1
2
(m̂ + ms) < p′ | − ūu + 2d̄d + s̄s| p > ,

with | p > a proton state with four-momentum p, t =
(p′ − p)2 the invariant momentum transfer squared. It
is most convenient to work in the Breit-frame in which
v · p′ = v · p. There are two types of contributions for the
σ-terms. To lowest order, there are the tree level contribu-
tions of chiral order two from the counterterms b0, bD, bF

of the Lagrangian L(2)
φB . The contributions from the Gold-

stone boson loops appear at next-to-leading order and can
be evaluated by using dimensional regularization [5]. A
typical integral in this analysis has for the case of zero
momentum transfer and d dimensions the form:∫

ddl

(2π)d

i3 (S · l)2

[l2 − m2
φ + iε]2 [v · l + iε]

=
3

64π
mφ , (9)

where mφ is the meson mass. The result is non-analytic
in the quark masses since mφ ∝ m

1/2
q . The integral grows

linearly with increasing meson mass. We expect the long
distance portion of the integral to be larger for small me-
son masses, since for small momenta the meson propaga-
tor can be approximated by 1/m2

φ. This indicates that in
the dimensionally regularized integral there are significant
contributions from short distance physics, which cannot
be described appropriately by chiral symmetry. Therefore,
one has to employ other regularization schemes that em-
phasize long distance effects of the integrals and reduce
short distance contributions. In [3] it was shown that a
simple dipole regulator fulfills these requirements.

For the evaluation of the Goldstone boson loops we
will employ the regulators:

R1 =
(

Λ2

Λ2 − l2

)2

,

R2 =
(

Λ2

Λ2 − l2

)(
Λ2

Λ2 − (l + q)2

)
, (10)

where l is the loop momentum and q the small off-shell
momentum of the external baryons in the heavy mass for-
malism. Both cases are identical for vanishing off-shell mo-
mentum q. The reason for considering the regulator R2 in
addition to R1 will become clear, when we introduce de-
cuplet fields. It turns out that including decuplet fields
leads to divergent integrals in the case of the regulator
R1, whereas R2 avoids this difficulty. Also, we are able to
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compare the results for the σ-terms in both regularization
schemes and examine the dependence on employing differ-
ent regulators. Inserting these regulators into the integral
in (9) leads to:

IΛ =
∫

ddl

(2π)d

i3 (S · l)2

[l2 − m2
φ + iε]2 [v · l + iε]

(
Λ2

Λ2 − l2

)2

= − 1
64π

Λ4

(Λ + mφ)3
. (11)

The introduction of the additional scale Λ spoiled the one-
to-one correspondence between the meson loops and the
expansion in the quark masses and the integral depends
strongly on the value of the cutoff Λ. However, this does
not mean that to the order we are working the resulting
physics will depend on Λ, since one is able to absorb the
effects of Λ into a renormalization of the LECs. To this
end, one expands the result in (11) in terms of the meson
mass mφ:

IΛ
mφ<<Λ−→ − 1

64π
Λ +

3
64π

mφ + . . . , (12)

where the ellipsis stands for higher orders in mφ. The sec-
ond term in the expansion agrees with the result from the
dimensionally regularized version. The first term is a con-
stant and can be absorbed into renormalizations of the
coefficients b0, bD, bF of the Lagrangian L(2)

φB , and indeed
this is found to be the case - one verifies that:

br
D = bD − 3F 2 − D2

128π
◦
F

2 Λ ,

br
F = bF − 5DF

192π
◦
F

2 Λ ,

br
0 = b0 − 13D2 + 9F 2

576π
◦
F

2 Λ, (13)

which agrees with the result already obtained in the anal-
ysis for the baryon masses [3]. That this renormalization
can occur involves a highly constrained set of conditions
and the fact that they are satisfied is a significant verifi-
cation of the chiral invariance of the cutoff procedure.

The chiral expansions at next-to-leading order for the
σ-terms read for zero momentum transfer:

σπN (0) =
m2

π

64πF 2
π

Λ4
(

3[D + F ]2
1

(Λ + mπ)3

+
1
3
[5D2 − 6DF + 9F 2]

1
(Λ + mK)3

+
1
9
[D − 3F ]2

1
(Λ + mη)3

)

−2m2
π

(
bD + bF + 2b0

)
, (14)

σ
(1)
KN (0) =

m2
K

64πF 2
π

Λ4
(

3
2
[D + F ]2

1
(Λ + mπ)3

+[
7
3
D2 − 2DF + 5F 2]

1
(Λ + mK)3

+
5
18

[D − 3F ]2
1

(Λ + mη)3
− 1

3
[D − 3F ]

×[D + F ]
(mπ + mη)Λ + 2mπmη

[Λ + mπ]2 [Λ + mη]2 [mπ + mη]

)

−4m2
K

(
bD + b0

)
, (15)

σ
(2)
KN (0) =

m2
K

64πF 2
π

Λ4
(

3
2
[D + F ]2

1
(Λ + mπ)3

+3[D − F ]2
1

(Λ + mK)3

+
5
18

[D − 3F ]2
1

(Λ + mη)3
+ [D − 3F ] [D + F ]

× (mπ + mη)Λ + 2mπmη

[Λ + mπ]2 [Λ + mη]2 [mπ + mη]

)

−4m2
K

(
b0 − bF

)
, (16)

where we have replaced
◦
F by the pion decay constant Fπ =

93 MeV, which is legitimate to the order we are working.
Note that an additional contribution arises for the two
kaon nucleon σ-terms from the π0η loop. Furthermore, the
πN σ-term is related to the nucleon mass by the Feynman-
Hellmann theorem σπN (0) = m̂(∂mN/∂m̂).

The strange contribution to the nucleon mass is given
by the σ-terms at zero momentum transfer:

ms < p|s̄s|p > =
(

1
2

− m2
π

4m2
K

)(
3σ

(1)
KN (0) + σ

(2)
KN (0)

)

+
(

1
2

− m2
K

m2
π

)
σπN (0) . (17)

We use this algebraic relation to calculate the strange
quark matrix element from the three σ-terms and the
quark mass ratio ms/m̂. On the other hand, this matrix
element can also be deduced by means of the Feynman-
Hellmann theorem < p|s̄s|p >= ∂mN/∂ms. Then, the
combination 3σ(1)

KN (0)+σ
(2)
KN (0) can be expressed in terms

σπN , ms < p|s̄s|p > and quark mass ratios and is in this
sense not an independent quantity1. The strangeness frac-
tion y of the nucleon is given by:

y =
2 < p|s̄s|p >

< p|ūu + d̄d|p >

=
m2

π

σπN (0)

(
m2

K − 1
2
m2

π

)−1

ms < p|s̄s|p > , (18)

and one defines the quantity σ̂ via:

σπN (0) =
σ̂

1 − y
. (19)

For non-vanishing t we have to distinguish between
both regularization schemes R1 and R2. The general for-

1 Similarly, the difference δ = σ
(1)
KN (0) − σ

(2)
KN (0) is related

to the proton-neutron mass difference at leading order in the
chiral expansion. One finds at this order δ = 65 ± 10 MeV
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mulae for the scalar form factors read:

σπN (t) =
m2

π

64πF 2
π

Λ4
(

3[D + F ]2J i(mπ)

+
1
3
[5D2 − 6DF + 9F 2]J i(mK)

+
1
9
[D − 3F ]2J i(mη)

)

−2m2
π

(
bD + bF + 2b0

)
, (20)

σ
(1)
KN (t) =

m2
K

64πF 2
π

Λ4
(

3
2
[D + F ]2 J i(mπ)

+[
7
3
D2 − 2DF + 5F 2]J i(mK)

+
5
18

[D − 3F ]2 J i(mη)

−1
6
[D − 3F ] [D + F ]Ki

)

−4m2
K

(
bD + b0

)
, (21)

σ
(2)
KN (t) =

m2
K

64πF 2
π

Λ4
(

3
2
[D + F ]2 J i(mπ)

+3[D − F ]2 J i(mK) +
5
18

[D − 3F ]2 J i(mη)

+
1
2
[D − 3F ] [D + F ]Ki

)

−4m2
K

(
b0 − bF

)
, (22)

with i = 1, 2. Employing the regulator R1 for the evalua-
tion of the Goldstone boson loops leads to:

J1(mφ) = − 1
(m2

φ − Λ2)2

(
mφ − Λ − mφ(m2

φ − Λ2)
(mφ + Λ)2 − t

+
m2

φ − 1
2 t√

t

[
ln

2mφ +
√

t

2mφ − √
t

− ln
mφ + Λ +

√
t

mφ + Λ − √
t

])
,

K1 = − 1
(m2

η − Λ2)2

(
mη − Λ − mπ(m2

η − Λ2)
(mπ + Λ)2 − t

+
m2

π + m2
η − t

2
√

t

[
ln

mπ + mη +
√

t

mπ + mη − √
t

− ln
mπ + Λ +

√
t

mπ + Λ − √
t

])

− 1
(m2

π − Λ2)2

(
mπ − Λ − mη(m2

π − Λ2)
(mη + Λ)2 − t

+
m2

η + m2
π − t

2
√

t

[
ln

mπ + mη +
√

t

mπ + mη − √
t

− ln
mη + Λ +

√
t

mη + Λ − √
t

])
, (23)

whereas for the modified regulator R2 one obtains:

J2(mφ) = − 1
(m2

φ − Λ2)2
1√
t

(
[m2

φ − 1
2
t] ln

2mφ +
√

t

2mφ − √
t

+[Λ2 − 1
2
t] ln

2Λ +
√

t

2Λ − √
t

− [m2
φ + Λ2 − t] ln

mφ + Λ +
√

t

mφ + Λ − √
t

)
,

K2 = − 1
(m2

η − Λ2) (m2
π − Λ2)

× 1√
t

(
[m2

π + m2
η − t] ln

mπ + mη +
√

t

mπ + mη − √
t

−[m2
π + Λ2 − t] ln

mπ + Λ +
√

t

mπ + Λ − √
t

− [m2
η + Λ2 − t] ln

mη + Λ +
√

t

mη + Λ − √
t

+[2Λ2 − t] ln
2Λ +

√
t

2Λ − √
t

)
. (24)

One is, in particular, interested in the shifts of the σ-
terms to the Cheng-Dashen points. These are t = 2m2

π

and t = 2m2
K for the πN and KN σ-terms, respectively.

The σ-terms can acquire imaginary parts depending on
the values for t and Λ. Since we will consider Λ only in
the range from 300 MeV to 600 Mev, the shift of the πN σ-
term is real. On the other hand, the shifts of the two KN
σ-terms acquire an imaginary part at t = 4m2

π and also
at t = (mπ + Λ)2 for sufficiently small values of Λ in both
regularization schemes. In the regularization scheme R2
there is an additional branch cut starting at t = 4Λ2. For
increasing Λ only the first branch cut t = 4m2

π from the
pion loop remains. This agrees with the dimensional reg-
ularization scheme, which is recovered for Λ → ∞. Since
we choose the Gell-Mann-Okubo value for the η mass,
the πη loop does not acquire an imaginary part below
t = 2m2

K < (mπ + mη)2. For the physical mass of the η
this contribution is tiny compared to the other parts. Be-
fore presenting the numerical results, we will include the
decuplet in the next section.

3 Inclusion of the decuplet

In general, it is assumed that baryon resonance states are
much heavier compared to the lowest-lying baryon octet.
In this case, they can be integrated out and replaced by
counterterms that do not include these resonance states
explicitely. However, while this might be a reasonable pro-
cedure for heavier resonances like the Roper-octet, it is a
questionable assumption for the decuplet. The low-lying
decuplet is separated from the octet by only ∆ = 231
MeV on average, which is much smaller than the K or the
η mass. Furthermore, the ∆(1232) couples strongly to the
πN sector, and its contribution plays an important role
in the channels, wherein this effect is possible. In the me-
son sector, the first resonance is the vector meson ρ with
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a mass of 770 MeV, which is considerably heavier than
the Goldstone bosons. It was therefore argued in [4] to in-
clude the spin-3/2 decuplet as explicit degrees of freedom.
In the framework of conventional heavy baryon CHPT it
was found that intermediate ∆(1232) states give a con-
tribution of 7.5 MeV to the πN σ-term shift which is as
large as the contribution from the the octet alone [5].

In this section we will include the decuplet fields and
the resulting loop integrals are evaluated by using the reg-
ulator R2. A similar analysis with the regulator R1 in-
stead is not possible since then divergent integrals arise
for non-vanishing momentum t. The pertinent interaction
Lagrangian between the spin-3/2 fields - denoted by the
Rarita-Schwinger fields Tµ -, the baryon octet and the
Goldstone bosons reads:

LφBT = −i T̄µ v · D Tµ + ∆ T̄µ Tµ

+
C

2

(
T̄µ uµB + B̄ uµ Tµ

)
, (25)

where we have suppressed the flavor SU(3) indices. In the
heavy mass formulation the fields Tµ satisfy the condition
v·T = 0. The coupling constant C = 1.2...1.8 can be deter-
mined from the strong decays T → Bπ. After integrating
out the heavy degrees of freedom from the relativistic La-
grangian, there is still a remaining mass dependence which
is proportional to the average octet-decuplet splitting ∆
and does not vanish in the chiral limit. In the Feynman
rules the mass splitting ∆ is contained in the decuplet
propagator:

i

v · l − ∆ + iε

(
vµvν − gµν − 4

3
SµSν

)
. (26)

The appearance of the mass scale ∆ destroys, in the case of
dimensional regularization, the one-to-one correspondence
between meson loops and the expansion in small momenta
and quark masses. No further complications arise in our
case, since the strict chiral counting scheme has already
been spoiled by introducing the scale Λ.

For zero momentum transfer t = 0 the decuplet con-
tributions to the σ-terms read:

δσπN (0) = − m2
πC2

96πF 2
π

Λ4
(

8H(mπ) + H(mK)
)

, (27)

δσ
(1)
KN (0) = −m2

KC2

96πF 2
π

Λ4
(

4H(mπ) +
4
3
H(mK)

)
, (28)

δσ
(2)
KN (0) = −m2

KC2

96πF 2
π

Λ4
(

4H(mπ) + 2H(mK)
)

, (29)

with

H(mφ) =
1

(Λ2 − m2
φ)3

(
− ∆[Λ2 − m2

φ]

+
1
2
∆ [4∆2 − 3Λ2 − 3m2

φ] ln
m2

φ

Λ2

+ [4∆2 − 3Λ2 − m2
φ]
√

∆2 − m2
φ

× ln
[

∆

mφ
+

√
∆2

m2
φ

− 1
]

+ [4∆2 − Λ2 − 3m2
φ]
√

Λ2 − ∆2 arccos
∆

Λ

)
;

for mφ < ∆ ,

H(mφ) =
1

(Λ2 − m2
φ)3

(
− ∆[Λ2 − m2

φ]

+
1
2
∆[4∆2 − 3Λ2 − 3m2

φ] ln
m2

φ

Λ2

−[4∆2 − 3Λ2 − m2
φ]
√

m2
φ − ∆2 arccos

∆

mφ

+[4∆2 − Λ2 − 3m2
φ]
√

Λ2 − ∆2 arccos
∆

Λ

)
;

for mφ > ∆ , (30)

where we required Λ > ∆. For the limit Λ >> mφ we
recover up to some constant terms the result from dimen-
sional regularization [5]:

H(mφ)
mφ<<Λ−→ −3

2

(
∆
[
ln

m2
φ

Λ2 +
2
3

]

−2
√

m2
φ − ∆2 arccos

∆

mφ
+

π

3
Λ + . . .

)
(31)

for the case mφ > ∆ and an analogous result for mφ < ∆.
The constant terms can again be absorbed into a renor-
malization of the parameters b0,D,F . The results for the
scalar form factors for general t can be found in App. A.

4 Results and discussion

In this section we present the numerical results for the
calculation of the σ-terms. We consider first the case with
no resonances. The values for our parameters are D =
0.75, F = 0.5, Fπ = 93 MeV, mπ = 138 MeV, mK =
495 MeV, and for the mass of the η we use the GMO
value for the pseudoscalar mesons mη = 566 MeV. The

differences for Fπ and mη to
◦
F - the pseudoscalar decay

constant in the chiral limit - and to the physical mass of η,
respectively, appear only at higher orders. We will restrict
ourselves to these central values of the parameters, since
a small variation in these parameters only leads to some
minor changes in the results.

In baryon chiral perturbation theory the transition be-
tween short and long distance occurs around a distance
scale of ∼1 fermi or a momentum scale of ∼200 MeV. This
corresponds to the measured size of a baryon. The effective
field theory treats the baryons and pions as point parti-
cles. This is appropriate for very long distance physics.
However, for propagation at distances less than the sep-
aration scale the point particle theory is not an accurate
representation of the physics. The composite substructure
becomes manifest below this point.

Of course, the cutoff Λ should not be taken so low in
energy that it removes any truly long distance physics.
Also, while it can in principle be taken much larger than
the separation scale, this will lead to the inclusion of spu-
rious short distance physics which can upset the conver-
gence of the expansion. It is ideal to take the cutoff slightly
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Table 1. Given are the LECs b0,D,F , the renormalized baryon

mass in the chiral limit
◦

Mr, the two KN σ-terms, the strange
quark matrix element (SME), the strange quark fraction y, σ̂
and the deviation from the Gell-Mann-Okubo relation [3MΛ +
MΣ − 2MN − 2MΞ ]/4 in dimensional regularization and for
various values of the cutoff parameter Λ in MeV

dim. Λ = 300 Λ = 400 Λ = 500 Λ = 600
bD [GeV−1] 0.008 0.068 0.070 0.072 0.075
bF [GeV−1] -0.606 -0.197 -0.185 -0.171 -0.153
b0 [GeV−1] -0.786 -0.459 -0.417 -0.371 -0.320
◦

Mr [GeV] 1.011 0.701 0.720 0.738 0.755
σ

(1)
KN (0) [MeV] 157.4 420.9 407.1 393.5 380.6

σ
(2)
KN (0) [MeV] 120.4 285.5 275.0 265.0 255.8

SME [MeV] -271.6 187.5 162.6 138.2 115.2
y -0.488 0.337 0.292 0.248 0.207
σ̂ [MeV] 67.0 29.8 31.8 33.8 35.7
GMO [MeV] 4.4 0.2 0.3 0.4 0.6

above the separation scale, so that all of the long dis-
tance physics, but little of the short distance physics, is
included. Therefore, we will vary the cutoff in the range
Λ ≥ 1/ < rB >∼ 300 − 600 MeV.

The four unknown parameters b0,D,F and
◦

M have to
be fixed from phenomenology. We will choose the four dif-
ferent baryon masses in the isospin limit and the value of
σπN ' 45 MeV to perform a least-squares fit for these
parameters. The explicit calculation of the masses in the
cutoff regularization scheme to the order we are working
can be found in [3]. As outlined in this work the asymp-
totic mass-independent component of the mass integral
which is proportional to Λ3 is removed by redefining

◦
M :

◦
Mr =

◦
M −(5D2 + 9F 2)

Λ3

48πF 2
π

. (32)

In Tables 1 and 3 we present the renormalized values
◦

Mr

after absorbing the consatnt pieces from the mass integral.
We are then able to make predictions for the KN σ-terms
and for the shifts to the Cheng-Dashen points. The results
of this calculation are shown in Table 1 and Table 2. we
present, besides the values for b0,D,F and

◦
M , the two KN

σ-terms at zero momentum transfer, the strange quark
matrix element from (17), the strange quark fraction y,
σ̂ and the deviation from the Gell-Mann-Okubo relation
[3MΛ +MΣ − 2MN − 2MΞ ]/4 between the baryon masses
that is experimentally about 6.5 MeV. Within the accu-
racy of the calculation, the KN σ-terms turn out to be:

σ
(1)
KN (0) = 400 ± 30 MeV ,

σ
(2)
KN (0) = 270 ± 20 MeV , (33)

where the uncertainty stems from the variation in the cut-
off Λ. For the other quantities we have:

ms < p|s̄s|p > = 150 ± 50 MeV , y = 0.25 ± 0.05 ,

σ̂ = 33 ± 3 MeV . (34)

The value for y is within the band deduced in [6], y =
0.15±0.10, and the value for σ̂ agrees nicely with Gasser’s
estimate σ̂ = 33 ± 5 MeV, given in [7]. Therein, the au-
thor comes to the conclusion that the lowest non-analytic
corrections to the baryon masses and the πN σ-term are
so large, that chiral perturbation theory is meaningless
in that case. He proposes a meson-cloud model by intro-
ducing a cutoff which regularizes the divergent integrals.
The calculations have been performed in relativistic chi-
ral perturbation theory and the cutoff is provided by the
square of the axial vector form factor which enters the
expression of the propagator and is similar to R2

1 in our
notation. Relativistic chiral perturbation theory is similar
to our non-relativistic calculation up to some relativistic
corrections at higher chiral orders, which are beyond the
accuracy of the present calculation. Therefore, agreement
in the value of σ̂ using two different cutoffs shows the irrel-
evance of the specific shape of the cutoff for this quantity.
In [2] it was shown that the specific form of the cutoff is
irrelevant for the cases discussed therein, e.g. the baryon
masses. The deviation from the Gell-Mann-Okubo relation
due to loops is found to be quite small in dimensional reg-
ularization, primarily due to the (accidental) feature that
it is proportional to D2−3F 2 << 1. We, therefore, expect
this deviation to be even smaller in the cutoff scheme. The
chiral expansions of the σ-terms in dimensional regular-
ization read:

σπN (0) = 82.7 − 37.7 MeV = 45.0 MeV ,

σ
(1)
KN (0) = 763.0 − 605.6 MeV = 157.4 MeV ,

σ
(2)
KN (0) = 177.1 − 56.6 MeV = 120.5 MeV . (35)

The chiral expansions of the σ-terms in the cutoff scheme
for Λ = 400 MeV are:

σπN (0) = 36.2 + 8.8 MeV = 45.0 MeV ,

σ
(1)
KN (0) = 340.5 + 66.6 MeV = 407.1 MeV ,

σ
(2)
KN (0) = 227.0 + 48.1 MeV = 275.1 MeV , (36)

where the first number denotes the lowest order contribu-
tion from the tree level result and the second number the
Goldstone boson loop contribution. The chiral expansions
in the cutoff scheme are much improved with respect to
the case of dimensional regularization, especially for σπN

and σ
(1)
KN . While in dimensional regularization the contri-

butions of two successive chiral orders are of opposite sign
and tend to cancel each other - a common feature in this
regularization scheme, there is a clear convergence in the
cutoff scheme. We also examined our results by varying
the value of the πN σ-term by ±10 MeV. This change
alters the value of b0 from −0.29 to −0.55 GeV−1 which
has a quite dramatic impact on the KN σ-terms and the
value of ms < p|s̄s|p >. This is in agreement with the cal-
culation in dimensional regularization [5]. We will restrict
ourselves to the central value of σπN = 45 MeV [6] in our
analysis. The changes in a calculation with the physical
mass of the η, mη = 549 MeV, are negligible.

In Table 2 we list the shifts of the scalar form factors
to the Cheng-Dashen points. We are able to compare both
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Table 2. Shifts to the Cheng-Dashen points in MeV in dimensional regularization and for
both regularization schemes R1 and R2. The cutoff parameter Λ is given in MeV

σπN (2m2
π) − σπN (0) σ

(1)
KN (2m2

K) − σ
(1)
KN (0) σ

(2)
KN (2m2

K) − σ
(2)
KN (0)

dim. 7.4 318.9 + i 334.9 9.4 + i 334.9
Λ = 300 (R1) 3.2 2.3 − i 1.1 -73.1 + i 3.4
Λ = 400 (R1) 3.8 -22.8 − i 7.4 -107.5 + i 22.2
Λ = 500 (R1) 4.3 7.6 − i 94.0 -199.3 + i 281.9
Λ = 600 (R1) 4.6 -220.1 + i 373.4 -1564 + i 373.4
Λ = 300 (R2) 3.6 -35.2 + i 65.7 35.7 − i 1.9
Λ = 400 (R2) 4.1 -84.8 − i 127.6 -45.5 − i 266.7
Λ = 500 (R2) 4.5 -347.9 + i 92.6 -220.9 − i 243.3
Λ = 600 (R2) 4.9 -123.6 + i 373.4 -669.8 + i 373.4

Table 3. Results of the calculation including the spin-3/2 de-
cuplet. The cutoff parameter Λ is given in MeV

dim. Λ = 300 Λ = 400 Λ = 500 Λ = 600
bD [GeV−1] 0.510 0.061 0.055 0.046 0.035
bF [GeV−1] -1.022 -0.191 -0.173 -0.149 -0.120
b0 [GeV−1] -1.591 -0.424 -0.351 -0.264 -0.169
◦

Mr [GeV] 1.328 0.730 0.761 0.787 0.806
σ

(1)
KN (0) [MeV] -46.0 411.0 390.2 369.1 348.7

σ
(2)
KN (0) [MeV] -100.7 275.2 257.3 239.3 222.2

SME [MeV] -671.3 168.3 129.7 90.7 53.1
y -1.206 0.302 0.233 0.163 0.095
σ̂ [MeV] 99.3 29.8 31.4 34.5 40.7
GMO [MeV] 11.0 0.3 0.6 0.9 1.2

regularization schemes R1 and R2, since these differ only
for non-vanishing off-shell momenta of the baryons. While
there is agreement for the πN σ-term, both regularization
schemes differ considerably in the KN σ-terms which de-
pend strongly on the cutoff Λ. This might indicate that
for these quantities higher orders play an essential role.
Clearly a definite statement about the shifts to the Cheng-
Dashen points for the KN σ-terms cannot be made. The
πN σ-term shift agrees in both regularization schemes and
we find:

σπN (2m2
π) − σπN (0) = 4 ± 1 MeV . (37)

This value is in agreement with the result ∆σπN =
5 ± 1 MeV of the complete fourth order calculation in
conventional heavy baryon chiral perturbation theory [8].
On the other hand, it is smaller than the empirical value
found in [6]. The main contribution to the πN σ-term
shift in the dispersive calculation in that paper comes from
an energy region in which the one-loop approximation is
off by a factor of two. Therefore, we expect contributions
from higher chiral orders to be significant. It remains to
be seen how higher order corrections not yet accounted
for will modify (37).

Adding the decuplet, we set ∆ = 231 MeV, which is
the average octet-decuplet mass splitting, and the value
of the coupling constant C is given by C = 1.5 from
an overall fit to the decuplet decays [9]. To perform a

least-squares fit for the parameters b0,D,F and
◦

M we have
to include the decuplet contributions to the octet baryon
masses, see App. B. The results of the fit can be found in
Table 3 and Table 4. We absorbed again the asymptotic
mass-independent component of the mass integral by re-
defining

◦
Mr:

◦
Mr → ◦

Mr − 5C2Λ2

24π2F 2
π

(
− π

4
Λ +

1
2
∆
)

. (38)

It turns out that there are no significant changes in the
results as in the case of dimensional regularization. We
obtain for the KN σ-terms:

σ
(1)
KN (0) = 380 ± 40 MeV ,

σ
(2)
KN (0) = 250 ± 30 MeV . (39)

For the strange quark contribution to the nucleon we have:

ms < p|s̄s|p > = 110 ± 60 MeV , y = 0.20 ± 0.12 ,

σ̂ = 35 ± 6 MeV . (40)

Note the large value of the matrix element ms < p|s̄s|p >
= −671 MeV in dimensional regularization. This time the
chiral expansions of the σ-terms in the cutoff scheme for
Λ = 400 MeV are:

σπN (0) = 31.2 + 13.8 MeV = 45.0 MeV ,

σ
(1)
KN (0) = 289.7 + 100.4 MeV = 390.1 MeV ,

σ
(2)
KN (0) = 173.9 + 83.4 MeV = 257.3 MeV , (41)

whereas the chiral expansions of the σ-terms in dimen-
sional regularization read:

σπN (0) = 140.7 − 95.7 MeV = 45.0 MeV ,

σ
(1)
KN (0) = 1060 − 1106 MeV = −46 MeV ,

σ
(2)
KN (0) = 557 − 658 MeV = −101 MeV . (42)

As in the case without resonances the convergence of the
chiral series in the cutoff scheme is significantly improved
with respect to dimensional regularization. We do not ob-
serve a dramatic change in the results as suggested by
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Table 4. Shifts to the Cheng-Dashen points in MeV in dimensional regularization and for
the regularization scheme R2 and including the decuplet. The cutoff parameter Λ is given
in MeV

σπN (2m2
π) − σπN (0) σ

(1)
KN (2m2

K) − σ
(1)
KN (0) σ

(2)
KN (2m2

K) − σ
(2)
KN (0)

Λ = 400 (R2) 5.7 -292.3 + i 73.4 -228.1 − i 65.8
Λ = 500 (R2) 6.5 -534.8 + i 425.7 -401.6 + i 89.8

employing dimensional regularization. For the evaluation
of the shifts of the scalar formfactors to the Cheng-Dashen
points we applied the regularization scheme R2, since the
scheme R1 leads to divergent integrals. For the σπN shift
we find:

σπN (2m2
π) − σπN (0) = 6 ± 1 MeV . (43)

This number is far outside the range of uncertainties for
the σπN shift ∆σπN ' 15 MeV quoted in [6]. In [5] it was
shown that the ∆ contribution is as big as the nucleon one,
and results in ∆σπN ' 15MeV. But, this number depends
on an inappropriate choice for the N∆ coupling constant
and in [10] a calculation within the so-called small scale
expansion led to ∆ contributions less than 4 MeV. The σ-
terms are proportional to symmetry breaking effects gen-
erated by the quark masses. For these small effects the
chiral representation does not provide an accurate predic-
tion of the momentum dependence, even if carried out to
one loop. This is confirmed by the result ∆σπN ' 5 MeV
in [8], where a complete calculation at chiral order O(q4)
was performed and the effects of the decuplet resonances
were incorporated into higher order coupling constants via
the resonance estimation scheme. The remaining piece of
the σπN shift is attributed to both higher loop correc-
tions and further continuum contributions, which will ap-
pear as higher order corrections in the chiral expansion.
In order to make a more definite statement, one has to
go to higher chiral orders which is beyond the scope of
the present work. The value of ∆σπN ' 15 MeV from a
dispersive analysis is more reliable and we will, therefore,
take the value of σπN (0) = 45 MeV as given, which relies
on the value ∆σπN ' 15 MeV quoted in [6].

There is still a sizeable uncertainty in the KN σ-terms,
and we present only the results for Λ = 400 and 500 MeV
in Table 4.

5 Summary

In this paper we have evaluated the πN and KN σ-terms
and scalar form factors by using a cutoff regularization:

◦ First, we calculated the σ-terms by using the next-
to-leading order Lagrangian for the Goldstone bosons
and the lowest-lying baryon octet in the heavy baryon
formulation. The Goldstone boson integrals are evalu-
ated by using a simple dipole regulator with a cutoff
Λ proposed in [3]. We also used a modified regulator,
which is similar to the first one for vanishing off-shell
momenta of the external baryons. We have given the

complete expressions for the σ-terms up to the order
q3, where q is an external momentum or meson mass.
The cutoff parameter induces an additional mass scale
that does not vanish in the chiral limit and, therefore,
destroys the strict chiral counting scheme. We are able
to show that to the order we are working the physics
does not depend on Λ, since one is able to absorb the
effects of Λ into a renormalization of the coupling con-
stants.

◦ The spin-3/2 decuplet is separated from the octet by
231 MeV in average which is smaller than the kaon or
eta mass. Therefore, we proceeded by adding the decu-
plet to the effective theory. Performing the calculation
with the regulator from [3] leads to divergent integrals
for non-vanishing off-shell momenta. One obtains finite
results for the other regulator.

◦ There are four unknown parameters in the theory - the
coupling constants b0,D,F from the Lagrangian of chi-

ral order q2 and the baryon mass in the chiral limit
◦

M -
which have to be fixed from phenomenology. We choose
the four baryon masses in the isospin limit (N, Σ, Λ, Ξ)
and the value σπN (0) = 45 MeV to perform a least-
squares fit for these parameters. In our analysis the
cutoff parameter ranges from 300 to 600 MeV to ac-
count for all the long distance physics, but little of the
short distance physics, which are not described appro-
priately by the effective theory, is included. Predic-
tions for the KN σ-terms and the strange contribu-
tion to the nucleon mass are made. The results with-
out the decuplet are σ

(1)
KN (0) = 400 ± 30 MeV and

σ
(2)
KN (0) = 270± 20 MeV for the two KN σ-terms (ac-

counting for the uncertainty in Λ). The strange contri-
bution to the nucleon mass is < p|mss̄s|p >= 150±50
MeV, which translates into the strangeness fraction
y = 0.25 ± 0.05 and σ̂ = 33 ± 3 MeV. The results
are in good agreement with previous calculations [6,
7]. While a definite statement about the convergence of
the chiral expansions for the σ-terms cannot be made
in dimensional regularization, there is a clear conver-
gence in the cutoff scheme. The πN σ-term shift to
the Cheng-Dahen point is 4 ± 1 MeV in both cutoff
schemes. This number is in agreement with the com-
plete fourth order calculation in conventional heavy
baryon chiral perturbation theory. But, this value is
smaller than the dispersive calculation of [6]. It re-
mains to be seen how higher order corrections not yet
accounted for will modify this result. The shifts for the
KN σ-terms depend strongly on the value of Λ, which
might indicate that higher chiral orders are important.
In order to include the decuplet states into the fit, one
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has to account for the decuplet contributions to the
baryon masses. Again a least-squares fit is performed
and it turns out that there are no significant changes
in the results. One obtains: σ

(1)
KN (0) = 380 ± 40 MeV,

σ
(2)
KN (0) = 250 ± 30 MeV, < p|mss̄s|p >= 110 ± 60

MeV, y = 0.20 ± 0.12 and σ̂ = 35 ± 6 MeV. For the
πN σ-term shift we obtain 6 ± 1 MeV. The remaining
piece of the σπN -shift ∆σπN ' 15 MeV found in the
dispersive analysis of [6] is attributed to both higher
loop corrections and further continuum contributions,
which will appear as higher order corrections in the chi-
ral expansion. In order to make a more definite state-
ment, one has to go to higher chiral orders which is
beyond the scope of the present work.
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A Decuplet contributions
to the scalar formfactors

The decuplet contributions to the scalar formfactors for
non-vanishing momentum transfer t can be presented as
follows:

δσπN (t) = − m2
πC2

96πF 2
π

Λ4
(

8H̃(mπ) + H̃(mK)
)

, (A.1)

δσ
(1)
KN (t) = −m2

KC2

96πF 2
π

Λ4
(

4H̃(mπ) +
4
3
H̃(mK)

)
, (A.2)

δσ
(2)
KN (t) = −m2

KC2

96πF 2
π

Λ4
(

4H̃(mπ) + 2H̃(mK)
)

, (A.3)

with

H̃(mφ) =
1

(Λ2 − m2
φ)2

(
− 2∆

[√
m2

φ

t
− 1

4
arcsin

√
t

2mφ

+

√
Λ2

t
− 1

4
arcsin

√
t

2Λ

]

+∆

[
m2

φ − Λ2

2t
ln

m2
φ

Λ2 +
1
t
β
(
artanh

m2
φ − Λ2 + t

β

−artanh
m2

φ − Λ2 − t

β

)]

−[∆2 − Λ2 +
1
2
t]
∫ 1

0
dx

1√
Λ2 − ∆2 − x(1 − x)t

× arccos
∆√

Λ2 − x(1 − x)t

+[2∆2 − m2
φ − Λ2 + t]

×
∫ 1

0
dx

1√
Λ2 − x[Λ2 − m2

φ] − ∆2 − x(1 − x)t

× arccos
∆√

Λ2 − x[Λ2 − m2
φ] − x(1 − x)t

−[∆2 − m2
φ +

1
2
t] f(mφ)

)
, (A.4)

with

β =
√

(m2
φ − Λ2 − t)2 − 4tΛ2 , (A.5)

and

f(mφ) =
∫ 1

0
dx

1√
∆2 − m2

φ + x(1 − x)t

× ln
∆ +

√
∆2 − m2

φ + x(1 − x)t√
m2

φ − x(1 − x)t
;

for mφ < ∆

f(mφ) =
∫ 1

0
dx

1√
m2

φ − ∆2 − x(1 − x)t

× arccos
∆√

m2
φ − x(1 − x)t

;

for mφ > ∆ , (A.6)

where we required Λ > ∆. We presented the result for suf-
ficiently small t. With increasing t the square roots become
imaginary and one has to continue H̃(mφ) analytically.

B Decuplet contributions to the masses

In this Appendix we give the results for the decuplet con-
tributions to the masses. They can be written in the form:

δMB =
C2

24πF 2
π

Λ4
(

απ
BM(mπ) + αK

B M(mK)

+αη
BM(mη)

)
, (B.1)

with coefficients

απ
N = 4 , αK

N = 1 , αη
N = 0 , απ

Σ =
2
3

,

αK
Σ =

10
3

, αη
Σ = 1 , απ

Λ = 3 , αK
Λ = 2 ,

αη
Λ = 0 ; απ

Ξ = 1 , αK
Ξ = 3 , αη

Ξ = 1 , (B.2)

and

M(mφ) =
1

(Λ2 − m2
φ)2

(
1
2
∆[

3
2
m2

φ − ∆2] ln
m2

φ

Λ2

−1
4
∆[m2

φ − Λ2]

−[∆2 − m2
φ]3/2 ln

[
∆

mφ
+

√
∆2

m2
φ

− 1
]

+[Λ2 − ∆2]3/2 arccos
∆

Λ
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+
3
2
[m2

φ − Λ2][Λ2 − ∆2]1/2 arccos
∆

Λ

)
;

for mφ < ∆ ,

M(mφ) =
1

(Λ2 − m2
φ)2

(
1
2
∆[

3
2
m2

φ − ∆2] ln
m2

φ

Λ2

−1
4
∆[m2

φ − Λ2]

−[m2
φ − ∆2]3/2 arccos

∆

mφ

+[Λ2 − ∆2]3/2 arccos
∆

Λ

+
3
2
[m2

φ − Λ2][Λ2 − ∆2]1/2 arccos
∆

Λ

)
;

for mφ > ∆ , (B.3)

where we required Λ > ∆.
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